
HEP.TrkX

Outlook on GNNs for HEP tracking

Steve Farrell, Xiangyang Ju
NERSC, LBNL

Exa.TrX kickoff, 2019-06-04

Thoughts on representations
● We tried a bunch of things in

HEP.TrkX
○ Images of simple toy data
○ Detector images

○ Hit sequences
○ Hit graphs

● Regardless of the specific model
architecture or application, I
believe we’ve found the right
representation of HEP tracking
data.

2

Increasing complexity
● The basic GNN approach seems to be holding up with fairly major upgrades in

data complexity
● Steps still in progress

○ Whole detector, including endcaps

○ Robust handling of missing hits, double hits, shared hits

3

What’s missing?
● Post-processing

○ Need a robust method to build final candidate tracks
■ Able to stitch together pieces of tracks

● Baseline methods results
○ E.g., Kalman Filter tracking on the TrackML dataset

4

HPC scaling work with Cray BDC
● Through the Cray Big Data Center collaboration, we’re engaging with folks

from Cray and LBNL’s CRD to push on HPC scaling of GNNs (for tracking)
○ Strong interest in scaling GNNs in PyTorch

● Computational challenges
○ Graphs with sparse connectivity => need sparse op support
○ Variable sized graphs => need to handle load imbalance at scale

○ Large scale training of GNNs => not much experience/intuition

5

Single node optimizations
● Saliya Ekanayake started with my original dense representation model (dense

adjacency matrices)

○ Did some profiling
○ Implemented faithful translation to sparse representations and using some

functionality from the pytorch-geometric package
○ Huge cost from the dense representation

● Later, I re-implemented the original model in native pytorch-geometric
representation and operations (scatter_add)

○ Saliya is comparing these

6

forward() -- time in μs

Total time: 28.7951 s
File: /Users/esaliya/sali/git/github/esaliya/python/heptrkx-gnn-tracking/models/gnn.py
Function: forward at line 78

Line # Hits Time Per Hit % Time Line Contents
==

78 @profile
79 def forward(self, inputs):
80 """Apply forward pass of the model"""
81 32 480.0 15.0 0.0 X, Ri, Ro = inputs
82 # Apply input network to get hidden representation
83 32 83301.0 2603.2 0.3 H = self.input_network(X)
84 # Shortcut connect the inputs onto the hidden representation
85 32 13714.0 428.6 0.0 H = torch.cat([H, X], dim=-1)
86 # Loop over iterations of edge and node networks
87 160 268.0 1.7 0.0 for i in range(self.n_iters):
88 # Apply edge network
89 128 6265327.0 48947.9 21.8 e = self.edge_network(H, Ri, Ro)
90 # Apply node network
91 128 20835340.0 162776.1 72.4 H = self.node_network(H, e, Ri, Ro)
92 # Shortcut connect the ...
93 128 31330.0 244.8 0.1 H = torch.cat([H, X], dim=-1)
94 # Apply final edge network
95 32 1565309.0 48915.9 5.4 return self.edge_network(H, Ri, Ro)

Node Network forward() -- time in μs

Total time: 20.5506 s
File: /Users/esaliya/sali/git/github/esaliya/python/heptrkx-gnn-tracking/models/gnn.py
Function: forward at line 49

Line # Hits Time Per Hit % Time Line Contents
==

49 @profile
50 def forward(self, X, e, Ri, Ro):
51 128 2549745.0 19919.9 12.4 bo = torch.bmm(Ro.transpose(1, 2), X)
52 128 2588509.0 20222.7 12.6 bi = torch.bmm(Ri.transpose(1, 2), X)
53 128 5036099.0 39344.5 24.5 Rwo = Ro * e[:,None]
54 128 5280113.0 41250.9 25.7 Rwi = Ri * e[:,None]
55 128 2318774.0 18115.4 11.3 mi = torch.bmm(Rwi, bo)
56 128 2370559.0 18520.0 11.5 mo = torch.bmm(Rwo, bi)
57 128 89165.0 696.6 0.4 M = torch.cat([mi, mo, X], dim=2)
58 128 317685.0 2481.9 1.5 return self.network(M)

Edge Network forward() -- time in μs

Total time: 7.78296 s
File: /Users/esaliya/sali/git/github/esaliya/python/heptrkx-gnn-tracking/models/gnn.py
Function: forward at line 24

Line # Hits Time Per Hit % Time Line Contents
==

24 @profile
25 def forward(self, X, Ri, Ro):
26 # Select the features of the associated nodes
27 160 3169923.0 19812.0 40.7 bo = torch.bmm(Ro.transpose(1, 2), X)
28 160 3249926.0 20312.0 41.8 bi = torch.bmm(Ri.transpose(1, 2), X)
29 160 540897.0 3380.6 6.9 B = torch.cat([bo, bi], dim=2)
30 # Apply the network to each edge
31 160 822219.0 5138.9 10.6 return self.network(B).squeeze(-1)

Sparse (150 - 700 MB)

Dense (600 - 1500 MB)

Dense vs. sparse memory

Training time

Training Time (s)

Dataset N
(tr/val)

agnn dense agnn
scatter add

agnn
spspmm

Med 8
(7/1)

24.0416 9.63175 10.6389

Big 64
(60/4)

81.9128 102.74

“Native” pytorch-geometric is fastest

Multi-node optimizations
● Strong load imbalance in profiling =>
● Need some special handling of the

data to balance the load
○ E.g., grouping samples together on

nodes to even it out
● Other ongoing work

○ Convergence at scale

○ I/O bottlenecks?

13

Work with Jacob Balma and
Kristi Maschhoff from Cray

Summary
● We’ve made good progress, though there’s still some work to go
● External folks find our problem very interesting for a number of reasons

● Leveraging their expertise to optimize and scale these workflows should be
beneficial

14

